Experimental Verification of Modeling of DELTA Robot Dynamics by Direct Application of Hamilton's Principle
نویسنده
چکیده
This contribution presents the experimental verijcation of the newly developed Hamilton-based dynamic model ofDELTA direct drive parallel robot by measurements of DELTA robot's motor torques. The strain gage technology was applied. The experiment is in author's opinion the Jirst ever for robot DELTA. The experimental results validate the modelling of robot DELTA as a Aystem of rigid bodies, connected by jrictionless joints. The results obtained from the model based on the direct application of Hamilton's Principle in extended space, taking into account the dijferences between real and desired accelerations, agreed with measurements to at least 5%. The motor torque measuring Jystem may be in future used in.force control ofDELTA robot.
منابع مشابه
Design, Modeling, Implementation and Experimental Analysis of 6R Robot (TECHNICAL NOTE)
Design, modeling, manufacturing and experimental analysis of a six degree freedom robot, suitable for industrial applications, has been described in this paper. The robot was designed on the assumption that, each joint has an independent DC motor actuator, with gear reduction and measuring sensor for angular joint position. Mechanical design of the robot was done using Mechanical Desktop and ma...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملElectronical and Mechanical System Modeling of Robot Dynamics Using a Mass/Pulley Model
The well-known electro-mechanical analogy that equates current, voltage, resistance, inductance and capacitance to force, velocity, damping, spring constant and mass has a shortcoming in that mass can only be used to simulate a capacitor which has one terminal connected to ground. A new model that was previously proposed by the authors that combines a mass with a pulley (MP) is shown to simulat...
متن کاملIntegrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics
In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...
متن کامل